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Some Computational Results on a 
Problem Concerning Powerful Numbers 

By A. J. Stephens and H. C. Williams* 

Abstract. Let D be a positive square-free integer and let X+ YV'h be the fundamental 
unit in the order with Z-basis {1, VD-}. An algorithm, which is of time complexity 
O(Dl/4+e) for any positive e, is developed for determining whether or not D I Y. Results 
are presented for a computer run of this algorithm on all D < 108. The conjecture of 
Ankeny, Artin and Chowla is verified for all primes _ 1 (mod 4) less than 109. 

1. Introduction. An integer N is said to be powerful if for any prime p such 
that p I N we must have p2 I N. In [4] Erdos conjectured that there do not exist 
three consecutive powerful numbers, and Granville [5] has shown that if this is 
true, then there exists an infinitude of primes p such that p2 t 2p -1 - 1. Mollin and 
Walsh [7] have pointed out that if there exist three consecutive powerful numbers, 
then there must exist some square-free D 7 (mod 8) with X + YVK- being the 
fundamental unit of Q(VDP) such that for some odd k, Xk is an even powerful 
number and Yk= 0 (mod D) is an odd integer, where Xk + Yk Xi = (X+ VD-Y)k. 

If, for a given value of D, we have D t Y, then it is a relatively easy matter 
to show that the least possible value for k such that Xk is powerful and D I Yk 
must be very large (see [7] for an example with D = 7). Thus, for this and other 
reasons, Mollin and Walsh asked the second author whether it was possible to find 
those values of D such that D I Y. In general, however, this seems to be a very 
difficult problem. Indeed, Ankeny, Artin and Chowla [1] conjectured several years 
ago that if (x + y/,F)/2 is the fundamental unit of Q(\/pi) when p is a prime and 
p _ 1 (mod 4), then p t y. Later, Mordell [8] conjectured that if X + Ye/j5 is the 
fundamental unit of Q(\5) when p -1 (mod 4) and p is a prime, then p t Y. 
Neither of these conjectures has been proved, but the Ankeny, Artin, Chowla (AAC) 
conjecture has been verified, most recently, by Soleng [13] for all p < 100028009 
and Mordell's conjecture has been verified for all p < 7679299 by Beach, Williams 
and Zarnke [2]. 

Because of the difficulty of this problem, we decided to investigate it numerically. 
In this paper we discuss how we found all the square-free values of D . 108 for 
which D I Y. We also verified the AAC conjecture for all p < 109. We describe two 
algorithms for conducting these numerical investigations. The first of these (the 
Small Step Algorithm) is basically the algorithm that has been used for previous 
work. We develop some general results concerning symmetric continued fractions 
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in order to give a slightly more compact form of this procedure than has been 
used in the past. We then make use of the class group infrastructure ideas of 
Shanks [12] as developed and modified by Lenstra [6], Schoof [10], and Williams and 
Wunderlich [15] in order to derive a second algorithm (the Large Step Algorithm). 
The complexity of the first algorithm is O(Dl/2+?) for all E > 0; but the complexity 
of the second is O(Dl/4e+). We then describe the results of implementing and 
running both of these algorithms on an AMDAHL 5850 computer. 

2. Continued Fractions and Ideals. All previous search methods for testing 
the AAC conjecture have made use of the properties of continued fractions. As 
the methods that we will employ here also involve continued fractions, we will first 
provide a brief review of some relevant results. Several of these can be found in 
standard reference works like Perron [9] or Chrystal [3], and others can be found 
in [15]. 

We first assume that X = (P + V-D)/Q, where D is a nonsquare positive integer 
and P, Q are integers such that Q I D - p2. The continued fraction expansion of 

0o = X which we write as 

0o = (qo, ql I q2i .. * * qn-1, i n) 

can be obtained by using** qo = [qo] and the recursive formulas 

Oi+l =q/X -i) > 1, 1 012.. 

qit= = [ i?2], 

Under the aforementioned conditions, it is well known that 

On = (Pn + )Qni 

where we can find Pn and Qn by using P0 = P, Qo = Q and 

(2.1) Pi+, = qiQ- - Pi, 

(2.2) Qi+,Qi = D - P2 0P1,, 2,... ), 

(2.3) qi+1 = [(Pi+, + d + oi+1)/QQ+?] 

where d = [vXIU] and 
On Qi+1 > 01 

cr~= 1, Qi+1< O. 

A somewhat more efficient method of determining these numbers has been given 
by Tenner (see [15]). 

If we define A-2 = 0, A-, = 1, B-2 = 1, B1 =0 and 

(2.4) A+, = qi+1Ai + Ai-1, 

(2.5) Bi+1 = qi+B +Bi, (i -1, 0, 1, 2, ...), 

(2.6) 0z+1 = (-1)'(Ai_.1 - B-_) 

then 

(2.7) Oi+1 = (-1)'(Gi_1 - V'7B-1)/Qo (i > -1), 

where 

(2.8) G_1 = QoAzl - PoBzl (i > i1). 

**We use [a] to denote that integer such that a - 1 < [a] < a. 
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In [14] it is pointed out that*** 

(2.9) 0i?10j?1 = - = (-1)iQ /Qo, 

i 

(2.10) = EI X 
j=1 

and 

(2.11) Gi-1 PiBi_1 + QiBi_2, 

(2.12) DBi_= PtGi_1 + QiGi-2 

Let a,3 E Q(C/- ) and denote by [ae3] the set {ua + v3 Iu,v E Z}. Let 
Wo = (r - 1 + V/?D)/r, where Do (> 0) is square-free, r = 1 when Do 2,3 
(mod 4) and r = 2 when Do 1 (mod 4). Any order 0 of Q(\/'Do) must have 
Z-basis {1, nwo}, where n E Z. We can denote such an order 1T [1, nwo]. Now C1 
is the maximal order of Q (\/io) and if Eo (0 < Eo < 1) is the fundamental unit of 

Q(\/io) and r (0 < r < 1) is the fundamental unit of the order Cr = [1, V'D]nI 
then either q = Eo orri = E3. Thus, if Eo = (x + yV/)/r and r = x + v Y 
(x, y, X, Y E Z), we see that if Doly, then DoI Y and if DoIY, then DoI3y. It 
follows that if 3 t Do, any algorithm that determines whether or not Do I Y can be 
used to determine whether or not Do Iy. 

Let C = Cn be any order in Q (v-D) and let a be any primitive, integral ideal 
of 0. As mentioned in [15], we can write a in the form [Q/u, (P + v'iP)/a], where 
a = r/g, D = (n/g)2Do, g = gcd(r,n). Here we have aQID _ p2, and if we 
develop the continued fraction expansion of X = (P + V-D)/Q, we find that each of 

the primitive ideals 

ai+ = [Qi/a,, (Pi + v')/o] (i = 0,1, 2,. ..) 

is equivalent to a = a,. Also, we have 

(2.13) (Qorm)am = (Qmr-)a1, 

where by (ca) we denote the principal ideal with generator ca. 

If by L(a) we denote the least positive integer of the ideal a, then L(a) = JQua. 
Also, if a is a primitive ideal and a does not contain any nonzero ca such that both 

Icel < L(a), la-1 < L(a) 

hold, then we say that a is a reduced ideal. If a, = a is a reduced ideal and if b is 

a reduced ideal equivalent to a, then b = ak for some k. Also, if a, is a reduced 

ideal, then by results given in [15], we have IQol < 2V'i and -1 < Ok < 0 (k > 1); 
hence, 

(2.14) ? < Pi < VD-, 0 < Qi < 2v/D (i > 1). 

As there are only a finite number of distinct pairs (Pi, Qi) satisfying (2.14) we must 

get Om = qOm+p for some p > 0, m > 0. By (2.2) we must have Qm-1 = Qm-i+p 

***We use a to denote the conjugate of a E Q(v'T). 
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and by Lemma 6.1 of [15] and (2.1) we get Pmil = Pm+p-i (m > 2). Thus, we 
have Pi = Pp+lI Qi = Qp+l and 

(2.15) Qo = Qp, Po _ Pp (mod Qo). 

Let p be the least positive integer for which (2.15) holds. If r (0 < rq < 1) is the 
fundamental unit of 0, by Theorem 4.5 of [15] we must have r = Sk for some k > 1. 
Since, in this case, ak = a1, we get k = p + 1 and by (2.5), 

(2.16) 7/ = Op+i = (-1)P(Ap- 1 - OBp). 

If a = [Q/a, (P + V-)/la], define a to be [Q/a, (P - VD-)/a]. If a = a, we say 
that a is an ambiguous ideal. We can now give a result which is well known in the 
case a = [1, VD-]. 

THEOREM 2.1. If a = [Qo/a, (Po + V-D)/a] (Qo > 0) is a reduced, ambiguous 
ideal, then in the continued fraction expansion of 4o = (Po + V')T/QO, we have 

(2.17) Qp-i = Qi, 

(2.18) P-i = Pi+1 (o < i < p), 

where p is the least positive integer for which (2.15) holds. 

Proof. Since al = al (= a) and a, = ap+1, we get a, = dp+,. Thus, Qp = Qo 
and Po _ -Pp (mod Qo). Since -1 < q1 < 0 (a, is reduced), we get 

Pp = [(d+ Po)/Qo]Qp - Pp = qoQo - Po = Pi 

by Lemma 6.2 of [14]. Thus, (2.17) and (2.18) hold for i = 0. On using (2.2), the 
result of Lemma 6.1 of [15] and (2.1), it is a simple matter to verify by induction 
on i that (2.17) and (2.18) hold for 0 < i < p. 0 

COROLLARY 2.1.1. Under the conditions of the theorem we have aj+ = p+ 1_i 
If p = 2r, then ar+1 = d,+i; if p = 2s + 1, then a+1 = as+2 a 

Let a be a primitive ideal of 0 = On, then it is a simple matter to show that 

(2.19) aa = (L (a) ) 

when gcd(L(a), n) = 1. We also point out that if a = a1 is a reduced ideal of 0, 
then 

0k+1 = (1/kk)0k and 1/I0kI > 1 

(-1 <qk <0) for k> 1. Hence, 

(2.20) Ijk+11 > I6kI (k > 1). 

If a1 is a reduced, ambiguous ideal of On such that gcd(L(a1), n) = 1, then we can 
find Bp-1 in (2.16) by only going up to about p/2 terms in the continued fraction 
expansion of q5. We show how this can be done in 

THEOREM 2.2. Let a = [Q/c, (D + V-D)/a] be a reduced, ambiguous ideal 
in 0 = ?n such that gcd(Q/cr, n) = 1. If r is the least positive integer such that 
Pr = Pr+, in the continued fraction expansion of - = (P + /7)/Q, then p = 2r 
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and BP_1 = Br- (Br +Br_2); if s is the least positive integer such that Q, = Q+1, 
then = 2s+ 1 and BP- = B2 +B2_1. 

Proof. By Corollary 2.1.1 we know that there must exist a value for r or a value 
for s. Suppose Pr = Pr+,. In this case we get 

ar+l = [Qr/0, (Pr + VD)/IO = [Qr/a, (Pr+i + VD)/IO 

= [Qr/0, (-Pr + VP)/Io = ar+j; 
also, by (2.13) we get 

(L(ai)Or+1)dr+1 = (L(ar+1))a1 = (L(ar+i))aj = (L(ai)0r+1)ar+1. 

Hence, by (2.19) we see that E = Or+1/I#r+lI is a unit of 0. Since r < p/2 < p, we 
have q = 0p+1 <0r+1 <1 and 

17 = 1/1Op+I < 1/1Or+Il < 1 

by (2.20). Since e must be an integral power of q, we must have E = q. On using 

(2.7), (2.9), and (2.16), we get 

(-1)PBp_1 = (2Br-iGr-l)/Qr. 

By (2.14) and (2.11) we know that Gr-1 > 0; hence, p is even and 

QrBp-l = 2Br-1 (PrBr-l + QrBr-2). 

Since Pr+, = Pr, we have 2Pr = qrQr by (2.1); hence, by (2.5) we get 

Bp_1 = Br-1 (Br + Br-2). 

Also, since Bk is a strictly increasing function of k for k > 1 and Bk > 0 (k > -2), 
we must have r = p/2 by Corollary 2.1.1. 

Suppose next that Q, = Qs+i. In this case we have P+i _-P8 (mod Q,) and 

a+, = [Q8/fa, (P8 + VD-)/la] = [Q8+11/a, (-P8+1 + )a] = a+2- 

By using the same reasoning as above, we get q = 0,+1/1Is+21 It follows that 

(-1)P+1Qs+iBpj = B81G0 + B80G81; 

hence, p is odd and 

Qs+,Bp- = q8Q8B8B8_1 + Q9+1B21 + Q8B8B8_2 

by (2.11) and (2.1). Since Q, = Qs+i, we have 

Bp_1 = B 2+ B 2 

by (2.5). Also, we must have p = 2s + 1. 0 

We can use Theorem 2.2 to develop the Small Step Algorthm for determining 
whether or not D I Y. We assume here that D = Do is square-free and a1 = 01. 

THE SMALL STEP ALGORITHM (SSA) 

(1) Put Po = 0, Qo = 1 when D -2,3 (mod 4) or Po = 1, Q0 = 2 when 

D _=1 (mod 4). 
(2) Compute the continued fraction expansion of (Po -+ V-D)/Q0 by evaluating 
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until we find the least r or s such that 

Pr = Pr+i 

or 

Q = Q8+ i 
(3) If Pr = Pr+l, then D I Y if and only if D I Br-1 (Br +Br-2). If Q, = Qs+1, 

then D I Y if and only if D B2 + B21. 

As mentioned above, simple variants of this algorithm have been used to obtain 
the known numerical results on the AAC conjecture. As D increases, however, 
this algorithm tends to slow down. Since we know that p = O(Dl/2+e) for any 
E > 0 (see, for example, Williams [14]), we see that this algorithm is of complexity 
O(Dl/2+e). In the following sections we will develop an algorithm, called the Large 
Step Algorithm, which will solve this problem in time complexity O(Dl/4+e). 

In order to do this, we will need to know how to find a reduced ideal which is 
equivalent to a given primitive ideal a. We point out here that by results in [15] 
we know that if a =a = [Qo/a, (Po + VP)/a] and ko = (Po + VD)/Qo, then 
the continued fraction expansion of q must yield some Qm such that 0 < Qm < d. 
When this occurs, we know that am,+ is a reduced ideal equivalent to a,. Further, 
the value of m is O(log IQo I). 

3. A Regulator Algorithm and Further Results. In order to develop 
our next algorithm we must first mention that if a = [Qla, (P + V?Th/ja, b = 
[Q'/a, (P' + /I)/a] are both primitive ideals of an order 0, then we can find the 
primitive ideal c = [Q"/a, (P" + VD-)/a] and an integer U such that 

ab = (U)c 

by using the formulas below. These formulas are essentially those of Shanks [11] 
and can be easily derived by using the method discussed in [6] or [10]. 

We put G = gcd(Q/a, Q'/o) and solve 

(Q/ao)xl- G (mod Q'/o) 

for xi (mod Q'/o). Put 

(3.1) U = gcd(G, (P + P')/ar) = gcd(Q/ao, Q'/o, (P + P')/a) 

and solve 

X2(P + P')r + GY2 = U 

for x2, Y2. Then 

(3.2) Q= QQ'/(cU2) 

(3.3) P" _ P + XQ/(aU) (mod Q"), 

where 
X y2xl(P'-P) + x2(D P2)/Q (mod Q'/U). 

Note that when, as frequently occurs, U = G, we can put x2 = 0, Y2 = 1. 
If we denote the pair (P, Q) (Q > 0) by A and the pair (P', Q') (Q' > 0) by 

B, we use A o B to denote the pair (P", Q") given by the formulas (3.2) and (3.3). 
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Also, since the ideal a which corresponds to A is the same as that corresponding to 
B when and only when Q = Q' and P - P' (mod Q), we will define equality of A 
and B by these conditions. 

Let a = a, be any reduced ideal in 0 and let b be any reduced ideal which is 
equivalent to a. By our remarks at the end of Section 2 we know that b = am for 
some m < p. Define &(am,a,) = logIOm . Notice that, by (2.20), &(am,a,) is a 
strictly increasing function of m. Also, 

6 (ap+ 1, a,) = log I p+iI = -logq. 

Thus we can always assume that 

0 < 6(b, a) < RI 

where R =-log r is the regulator of 0. 
Now let b1 and a, be ideals of 0 and assume that b1 = [Q,/a, (Po + V'IP)/a] 

(Q' > 0) is a reduced ideal and a, = (1). If 

(U)c =abt, 

where cl = c is a primitive ideal of 0 and cm+, cl b1 is found by using the 
continued fraction method of reduction described at the end of Section 2, then by 
Theorem 5.2 of [15], we have Cm+, = bk for some k > 1 and 

k= (t8Ot$m+l)/U, 

where (L(b1)0)bt = (L(bt))bj, (09))ac = (L(aci)), (L(ci)O")Cm = (L(cm))cl. It 
follows that if we put 5i = 6(bi, b1), 6j = 6(aj, a,), then 

(3.4) 6 =68 +6 +A, 

where A = log(16mO+1 1/U). By Theorem 4.3 of [15] we have 

(0m/+ 1) < 2Q///0//; 

hence, by (2.9) we get I+O l < 2. Also, since 0 < 0$ + 1 < 1, we have 

10/m+,I > Q11 Q11 > 11Q11; 

thus, 
> >-log(Q'U) >-log(Q,1 Q'-1) > -log 4D 

by (2.14). We have shown, then, that in (3.4) we have 

(3.5) -log4D < A < log2. 

We will also require the following simple lemma. 

LEMMA 3.1. If a, is a reduced ideal of O and 

6(ak, a, ) < 6((a, ai) +log 2, 

then ak = ai for some i such that 1 < i < s + 1. 

Proof. Let i = 1/0j. Now ?i+l = 1/?/i - [0i]; hence, ?/ji/j+j = 1 -?/&[j]. Since 
-1 < qi < 0 and qi > 1, we have 



626 A. J. STEPHENS AND H. C. WILLIAMS 

Now 

(a,+2, a,) = log09 1+21 = 6(a,,a,) +log iO 

thus, since 6(a,+2, a,) > 6(as, a,) + log 2 and 6 is an increasing function of s, the 
lemma follows. 5 

We are now able to present an algorithm which can be used to compute the 
regulator R of 0 in O(Dl/4+E) (e > 0) elementary operations. We let a, = (1), 
6i = 6(aij1,aa), Ai = (Pi,Qi), and put L = [cD1/4] where L E Z and c is some 
constant. We usually use c > 2. 

ALGORITHM TO COMPUTE R. 

(1) Using the continued fraction algorithm, compute and store Ai, 6i for i = 

0,1,2, ..., s + 1, where s = L + 1. If any Qi = Qo with O < i <.s + 1, then 
R = 6i and we can exit from the algorithm. 

(2) Put B1 = As, 6; = 6s, j = 1. 
(3) Compute U and (P", Q") from C = (P", Q") = A, o B3j. By expanding the 

continued fraction of (P" + VD-)/Q", find the least nonnegative m such 
that 0 < Qm < d and put 

(3.7) A3 = log(I0$ +, I/U), 6; = 
63 

+ 69 + Ai. 

(4) If C = Ai for some i such that 0 < i < s + 1, then 

R = b,*+ 1 - i, 

and we can exit from the algorithm; otherwise, we replace j by j + 1, B3 
by C, and go to (3). 

Proof of the Regulator Algorithm. From (3.6) and (2-10) we see that ljkI > 
2[(k-1)/2]; hence, 

6k > (k/2 - 2) log2 

and 

(3.8) 68 > (s/2 - 2) log 2 > (cL/2 - 2) log 2 > log 4D 

when D is sufficiently large. (Certainly, this is so if c > 2 and D > 106.) Since by 
(3.5) we have A3 > -log4D in (3.7), we must have 

6j+4 > 6>f 

Further, if we do not exit the algorithm at Step (1), then R > 68 = 6j; thus, there 
must be some integer t such that 

(3-9) 6*~~~~b < R < Et4l 

From (3.7) we get 

k 

*= 6* +k68 +EAi > 6j* +k6, - klog4D. 

Now if 
k> (R - 6*)/(68 - log 4D), 
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then, since 6, - log 4D > (D1/4 - 2) log 2 - log 4D by (3.8) and selection of L, we 
see that 

k = O(R/D'/4) = O(D1/4+E) 

and 64* > R. Thus, t = O(Dl/4+E). 
Let (P", Q"1) = A, o Bt and let Cm+, = [Q1/1a, (PF" + V'i~)/a]. Since Cm+, is 

reduced and cm+1 - a,, we must have cm+1 = aj-1 for some 1 < j ? p+ 1. Now 
since (3.9) holds, we must have 

6(aj-%, a,) = 6t*+ - R = 6E - R + 6 + At < C + log2 

by (3.5). It follows from Lemma 3.1 that (Pm, Q" ) = Ai for some 0 < i ? s + 1. 
Since R = 6t* 1- 6(ai_-, Ia,), we get R = 6t*+l - 6i 

Notice that we have shown that the algorithm is correct and that it will execute 
in LDR + tDR = O(D1/4+E) elementary operations when we assume that the Ai's 
in step (1) have been sorted. 

We will now modify this algorithm in order to make it useful in determining 
whether or not D I Y. In the case of 0 = 0r and a, = 0, we have Qo = 1 and 
Y = Bp_1 in the continued fraction expansion of VD, where we assume D = Do is 
square-free. We note here that D I Bp_1 if and only if D I MBp_1 fo' M any integer 
such that gcd(M, D) = 1. In our algorithm we will compute MBp-1 (mod D) for 
some unknown M such that gcd(M, D) = 1. 

If a = [QP + VD-]I b = [Q', P + VD-] are ideals of 0 and V = gcd(QD), 
V' = gcd(Q', D), then V, V' are both square-free and since Q I D_ p2 Q'/ D _ p'2 
we have V I P, V' I P'. Put W = gcd(V, V'). Since V, V', W are each square-free, 
we have gcd(V/WV, W) = gcd(V'/W, W) = gcd(V'/W, V/W) = 1; hence, 

(3.10) VV' I DW. 

Since WIQ, WIQ' and WIP+ F', we have WIU, where U is given by (3.1). 
If U = WW*, then gcd(W*,D) = 1. Since W*IQ and VIQ, we know that 
T = QQ'/(VV'W*) is an integer. Since D is square-free, we have gcd(Q/V, D) = 
gcd(Q'/V, D) = 1; thus, gcd(T, D) = 1. It follows that if Q" is given by (3.2), we 
have 

(3.11) UQ" = T(VV'/W), 

where gcd(T, D) = 1. Also, since W*QQ" = T(V/W)(V'/W), we have 

(3.12) VV' i W2Q". 

As before, we will let a1 = (1) and put 

(U)c = a,+lat+i, 

where c is a primitive ideal. Let cm+, (- c1) be the reduced ideal found by using 
the continued fraction reduction method. Then cm+1 = ak+1 for some k > 0'and 

(3.13) 0k+1 = (O8+1O0t+1 O+ 1)/U. 

If we define Vi = gcd(Qi, D), then we have Vi I Pi and Vi I AiA1 by (2.11). Set 
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Si-, = Ai-1/Vi. We conclude this section with 

THEOREM 3.1. If (3.13) holds, then for some r = A1, we have 

rTkSk-1 L1H + L2K, rTkBk-1 _ L3H + L4K (mod D), 

where gcd(Tk, D) = 1, 

H WS8_Sti + (D/(WZ8Zt))BiBti, 

K ZsSs1Bt-1 + ZtSt-1B,-1 (mod D), 

and W = gcd(V8,Vt), Z, = Vs/W, Zt = Vt/W, Qk = Q11, G1 = PmBm1- + 
QmBm-2, L1 = G" /1 lVk, L2 _ DB" _i/(Z8ZtVk) (mod D), L3 = B" 1, L4 = 

G"1 _1/(ZZ), Tk = UWQ /(Vs Vt). 

Proof. By our previous remarks and (3.11), we see that gcd(Tk,D) = 1. We 
next point out that from (2.6) we get 

(-l),+kOs+lOt+l = H,(VtV)/W-WK1V, 

where H1, H K1 K (mod D); hence, 

UQ"(-l)(Ak-1 - v'-Bk-1) = G" -,H,(VtV8)/W + DWK B' 

-V(WKK1c G"1 + B"1 H, (VtV8)/W), 

where j = s + t + m + k. Now Z8Zt I Qo, and since c is an ideal of 0, we have 
Z8Zt I D -P 2; thus, Z8Zt I PO', and by (2;8) we deduce that Z8Zt I G'l 1 (i > 0). 
It follows immediately that L4 is an integer. Also, since Vk = gcd(Qk, D) and 
QkID-P$M we have VkiP" and VkG"-1 by (2.11). Now B'1 = 0 and from 
(2.12) 

DB"1 = P" G"1 + QmGm-2; 

hence, since Z8Zt I G" -1, Z8Zt I G"2 (m > 1), we get 
Z-Zt~k 

| DBm1. Thus, Li 
(i = 1, 2,3,4) are all integers and by (3.11) so is D/(WZ8Zt). 5 

4. The Large Step Algorithm. We are now able to present our second 
algorithm for determining whether or not D I Y. 

THE LARGE STEP ALGORITHM (LSA) 

(1) Let L be defined as above. In the continued fraction expansion of VD, 
compute and store Ai = (Pi, Qi) and Bi-1 (mod D) for i = 1, 2,3, .. ., s+1, 
where L+1 <s < L+2 and Q, < V'. (If Qj > '/D, then Qj+1 < VD by 
(2.14) and (2.2)). If any Qj = 1 (1 < i < s + 1), put Y' _ Bi-1 (mod D) 
and go to (5). 

(2) Put V = gcd(Q,, D), V' = V, P' = P, Q' = Q8, E = E' _ (P/V)B81 + 
(Q/V)B82 (mod D), F= F'_ B,_1 (mod D). 

(3) Let (PO"' Qo) = A, o (P', Q'). In the continued fraction expansion 
of (PO' + V'7P)/QO, compute (Pi", Q') and B' 1 (mod D) until the least 
nonnegative m is found such that 0 < Q" < d Put Q' = QmI Gm1 = 
PmB/ B1 + Q/mBm2 F' Pm (mod Q') (0 < P' < Q'), W = gcd(V, V'), 



A PROBLEM CONCERNING POWERFUL NUMBERS 629 

V" = gcd(Q',D), Z = V/W, Z' = V'/W, L1 = Gm1/V", L2 
DBm1/(ZZ'V") (mod D), L3 = B11 L4 = G1 /(ZZ') * Compute 

H WEE' + (D/(WZZ'))FF', 

K ZEF'+ Z'E'F, 

E' _L1H+L2K, 

F'=_ L3H + L4K (mod D). 

(4) If (P', Q') = Ai for some i such that 0 < i < s + 1, put 

S -(Pi/V")Bi-i + (Qi/V")Bi-2, 
Y'=_ Bi-,E'- F'S (mod D); 

otherwise, put V' = V" and go to (3). 
(5) D I Y if and only if D I Y'. 

Proof of the Large Step Algorithm. Since Qp = 1, it is clear that the algorithm 
is correct when p < s + 1. We will suppose, therefore, that p > s + 1. By (2.11) we 
have E = A,1/V8, where V8 = gcd(Q,, D). Thus, by Theorem 3.1 we see that at 
any stage of the execution of the algorithm the ideal [Q', P' + VD-] = ak+1 for some 
k > 0 and Sk-1 = ME', Bk-1 _ MF' (mod D), where M is some (undetermined 
by the algorithm) integer such that gcd(M, D) = 1. By the reasoning in the proof 
of the Regulator Algorithm, we must eventually have some (P', Q') = Ai where i 
is some integer such that 0 < i < s + 1. When this occurs, we have 

77 = 0i+i/0k+1, 

where ak+1 = [Q', P' + VD]; hence, by (2.6), 

(-l)P+iQiBp-l = Bi-iAk - Bk-iAi-,. 

Now S _ Si-1 _ (P1/Vi)Bi-1 + (Qi/Vi)Bi_2 (mod D), gcd(Qk/Vk, D) = 1, Qk = 

Qi, and Vk = Vi; hence, 

(-1)P+i(Qk/Vk)Y -Bi-1ME' - SF'M -MY' (mod D). 

Thus, Y' _ MY (mod D), where gcd(M,D) = 1. 0 
Notice that by the reasoning used in the proof of the Regulator Algorithm, this 

algorithm too will execute in O(D1/4+E) elementary operations when we sort the 
Ai's in step (1) and do a binary search each time we wish to execute the search in 
step (4). In practice, however, it is faster to conduct this search by using hashing 
techniques. In our implementation we hashed on the last byte of each Qi in Ai. 

Because B" 1 Q/' P' (i < m) and G1 must be computed explicitly (not just 
modulo D) for this algorithm, it is important for implementation purposes to know 
just how large these numbers can get. We answer these questions in the following 
two theorems. 

THEOREM 4.1. Let a = [Q0/a, (Po + V')/a] with 0 < PO < Qo and let m 
be the least nonnegative integer such that 0 < Qm < d in the continued fraction 
expansion of (Po + VD-)/Q0. We must have IQkI < Qo (0 < k < m). 

Proof. Certainly, if m = 0, we get our result. Thus, we may assume that m > 0. 
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Suppose k = 1, then 02 = 1/0q < 1 and 02 = (-VD - P1)/Qo. Since Qo > 

V (m > 0), we see that O < qo = [(Po + V/i)/QO] < 2. If qO = 0, then 

Pi = -Po, Q, = (D-P02)/QO; when Po < VD-, then 0 < Q, < vXiii < Qo. If 

qO = 0 and Po > -v, then IQl = (Po2 - D)/Qo < PJ2/Qo < Q0. If qo = 1, 

then (Po + v')/QO > 1, 0 < Q0-Po < v'7, and P1 = Qo-Po. Hence, 
0 < Q, = (D-P?2)/Qo < vii < Qo. 

Thus the result holds when k = 1; it also holds for k = m. We may now assume 

that 1 < k < m. By Theorem 2.4 of [15] we have qk > 0 and by Theorem 2.5 of 

[15] we get 
Bk-20ak- < Qo/IQkI- 

Since Ok+1 < 1, Bk-2 > 1, we have Qo/IQkI > 1. 0l 

COROLLARY 4. 1. 1. Under the conditions of the theorem we have IPkI < D+ 

QO (O < k < m). 

Proof. Since qk-1 = [(Pk-, + VK)h/Qk-1], we have from (2.1) 

Pk = D - eQk-1, 

where 0 < e < 1. Since 0 < Po < Qo and IQk-iI < Qo, we have our result. 5 

THEOREM 4.2. Under the conditions of Theorem 4.1 we have IGm-l1 < Qo, 

Bm-i < Qo/1V_. 

Proof. If m = 0, then Gm-i = Qo, Bm-1 = 0; if m = 1, then Gm, = 

Q0qo - Po = P1, Bm-1 = Bo = 1. Since, as shown in the previous theorem, we 

have Pi = -Po or Pi = Qo - Po, we see that the theorem holds for m = 0,1. If 

m 2 and qo = 1, then Qo -Po < VD and 0 < Pi < VD; hence, 0 < Q' < 

(D - P2)/Qo < VDP, which contradicts the definition of m. Thus, if m = 2, we 

have qo = 0, Pi = -Po, Qi = (D - P2)/Qo, Gm-i = QO - qPo, Bm- = qi = 

[QO/(VPD + Po)] < Qo/VIP. It follows that Gmi, = Qo0V'/(Po + VD) + ePo 

(O < e < 1); hence, 0 < Gm-i < Qo. 

Suppose m > 3 and Om > 0. We get 

0 < #m+l < 1/Bm-2 < 1 

from Theorem 2.5 of [15]. Since 

2(-l)mGm-i = (Om+, + #m+i)Qo 

and 

2(-1)mVBm_1 = (Om+1 - Om+i)Qol 

we have IGm-l1 < Qo, Bm-1 < Qo/1V'. If m > 3 and Om < 0, we have 

0 < m < 1/Bm-3 < 1. 

Putting Xm = (VT - Pm)/Qm-l = 1/qm < 1, we note that 

,m = (-V -Pm)/Qm-l- 

Since Om < 0, we have lPml < V/1 and Qm-i > 0; thus, -0bm < 2, and we have 

2(-l)mGm-i/Qo = Om/m + OmV/)m > -2. Also, 2(-l)mGm-i/Qo < 1. Further, 

since Om+i < Om and -Om+i = - m -m <-m, we get 

2VDiiBm-i < Qo(yOm -0_m) = 2Q0V@/Qm-i < 2Qo. 
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Both the SSA and a version of the LSA were written in IBM/370 assembly 
language and run on an AMDAHL 5850 computer. The SSA program was run up 
to 107 only and succeeded in finding 8 values of D such that D I Y. These are: 
46 = 2 23, 430 = 2 5 43, 1817 = 23 79, 58254 = 2 3 7 19 73, 209991 = 3 69997, 
1752299 = 41 . 79 541, 3124318 = 2 1562159, 4099215 = 3 5 273281. The total 
amount of machine time consumed by this run was 2.25 hours. Tests with the LSA 
revealed that our version of it became faster than the SSA at values of D somewhat 
in excess of 2 x 106. Experiments in finding a good value for c for the numbers in 
the range that we considered resulted in our using c =2.5. 

The LSA program was run on all values of D from 106 to 108. The three D values 
given above in the range between 106 and 107 were found, but no further values of D 
were discovered. This run took about 40 hours of CPU time. Because of the interest 
in the AAC conjecture, we ran our LSA program on all primes (_ 1 (mod 4)) in 
the range 108 to 109. When D is a prime we always have Vi = gcd(Qi, D) = 1 and 
this allows for considerable simplification of step (3) of the LSA. This run required 
31 additional CPU hours and found no prime which did not satisfy the conjecture. 
Notice that since the word size for the AMDAHL 5850 is 32 bits and all of the D 
values which we considered were less than 109 and Q( < v/iD. v'iii = D, we were 
able to use single-precision arithmetic throughout most of the algorithm. 

Since none of the D values given above is a prime, we have, incidentally, verified 
Mordell's conjecture for all primes < 108. Finally, we remark that Mollin has 
proved that for each of the values of D _ 7 (mod 8) in the list above, i.e., 209991 
and 4099215, the corresponding X value is not powerful. 
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